ವೃತ್ತಗಳು CIRCLES

 ವೃತ್ತಗಳು

ನೆನಪಿಡಬೇಕಾದ ಅಂಶಗಳು:

ಒಂದು ಸಮತಲದಲ್ಲಿ ಸ್ಥಿರಬಿಂದುವಿನಿಂದ ಸ್ಥಿರ ಅಂತರದಲ್ಲಿರುವ ಬಿಂದುಗಳ ಸಮೂಹವೇ ವೃತ್ತ.

ವೃತ್ತವನ್ನು ವೃತ್ತದ ಮೇಲಿನ ಎರಡು ಬಿಂದುಗಳಲ್ಲಿ ಛೇದಿಸುವ ರೇಖೆಯನ್ನು ವೃತ್ತಛೇದಕ ಎನ್ನುವರು.

ವೃತ್ತವನ್ನು ಒಂದೇ ಒಂದು ಬಿಂದುವಿನಲ್ಲಿ ಛೇದಿಸುವ ರೇಖೆಯನ್ನು ಸ್ಪರ್ಶಕ ಎನ್ನುವರು.

ಸ್ಪರ್ಶಕ ಮತ್ತು ವೃತ್ತಕ್ಕಿರುವ ಸಾಮಾನ್ಯ ಬಿಂದುವನ್ನು ಸ್ಪರ್ಶಬಿಂದು ಎನ್ನುವರು.

ವೃತ್ತದ ಒಂದು ಬಿಂದುವಿನಲ್ಲಿ ವೃತ್ತಕ್ಕೆ ಒಂದೇ ಒಂದು ಸ್ಪರ್ಶಕವನ್ನು ಎಳೆಯಬಹುದು.

ವೃತ್ತ ಒಂದರ ಅನುರೂಪ ಜ್ಯಾದ ಎರಡು ಅಂತ್ಯ ಬಿಂದುಗಳು ಐಕ್ಯವಾದಗ ದೊರೆಯುವ ಛೇದಕದ ವಿಶೇಷ ಪ್ರಕರಣವೇ ವೃತ್ತ ಸ್ಪರ್ಶಕ.

ವೃತ್ತದ ಮೇಲಿನ ಯಾವುದೇ ಬಿಂದುವಿನಲ್ಲಿ ಎಳೆದ ಸ್ಪರ್ಶಕವು ಸ್ಪರ್ಶ ಬಿಂದುವಿನಲ್ಲಿ ಎಳೆದ ತ್ರಿಜ್ಯಕ್ಕೆ ಲಂಬವಾಗಿರುತ್ತದೆ.

ವೃತ್ತವು ಹೊಂದಿರಬಹುದಾದ ಸ್ಪರ್ಶಕಗಳ ಸಂಖ್ಯೆ ಅಪರಿಮಿತ.


ಒಂದು ವೃತ್ತವು ಹೊಂದಿರಬಹುದಾದ ಸಮಾಂತರ ಸ್ಪರ್ಶಕಗಳ ಗರಿಷ್ಠ ಸಂಖ್ಯೆ 2


ವೃತ್ತದ ಒಳಗಿನ ಬಿಂದುವಿನ ಮೂಲಕ ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕವನ್ನು ಎಳೆಯಲು ಸಾಧ್ಯವಿಲ್ಲ.


ವೃತ್ತಕ್ಕೆ ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ನಿರ್ದಿಷ್ಟವಾಗಿ ಎರಡು ಸ್ಪರ್ಶಕಗಳನ್ನು ಎಳೆಯಬಹುದು .


ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಎಳೆದ ಸ್ಪರ್ಶಕಗಳ ಉದ್ದವು ಸಮನಾಗಿರುತ್ತವೆ


ಎರಡು ಏಕ ಕೇಂದ್ರೀಯ ವೃತ್ತಗಳಲ್ಲಿ ದೊಡ್ಡ ವೃತ್ತದ ಜಾವು ಚಿಕ್ಕ ವೃತ್ತವನ್ನು ಸ್ಪರ್ಶಿಸಿದರೆ ಜಯ ವು ಸ್ಪರ್ಶ ಬಿಂದುವಿನಲ್ಲಿ ಅರ್ದಿಸಲ್ಪಡುತ್ತದೆ.


 ಪ್ರಮೇಯ 1

ವೃತ್ತದ ಮೇಲಿನ ಯಾವುದೇ ಬಿಂದುವಿನಲ್ಲಿ ಎಳೆದ  ಸ್ಪರ್ಶಕವು ಸ್ಪರ್ಶ ಬಿಂದುವಿನಲ್ಲಿ ಎಳೆದ ತ್ರಿಜ್ಯಕ್ಕೆ ಲಂಬವಾಗಿರುತ್ತದೆ 





ದತ್ತ. :  O ವೃತ್ತಕ್ಕೆ P  ಬಿಂದುವಿನಲ್ಲಿ ಎಳೆದ ಸ್ಪರ್ಶಕ XY ಆಗಿದೆ. ಸಾಧನೀಯ : OP     XY 

ರಚನೆ:       P ಯನ್ನು ಹೊರತುಪಡಿಸಿ XY ಮೇಲೆ ಮತ್ತೊಂದು ಬಿಂದು Q ವನ್ನು ಗುರುತಿಸಿ  OQ ಸೇರಿಸಿದೆ.

 ಸಾಧನೆ  : OQ>OP            (OQ,  ತ್ರಿಜ್ಯOP ಗಿಂತ ಉದ್ದವಾಗಿದೆ)     Pಬಿಂದುವನ್ನು ಹೊರತುಪಡಿಸಿ 

XY ಮೇಲಿನ ಎಲ್ಲಾ ಬಿಂದುಗಳಿಗೂ ಅನ್ವಯಿಸುವುದರಿಂದ 

OP ಕನಿಷ್ಠ ಉದ್ದವನ್ನು ಹೊಂದಿದೆ ಹಾಗಾಗಿ

OP XY ಆಗಿದೆ .

ಪ್ರಮೇಯ 2 

ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಎಳೆದ ಸ್ಪರ್ಶಕಗಳ ಉದ್ದಗಳು ಸಮವಾಗಿರುತ್ತವೆ 

ದತ್ತ : O ವೃತ್ತ ಕೇಂದ್ರ, PQ ಮತ್ತು PR ಗಳು  ಬಾಹ್ಯಬಿಂದು Pನಿಂದ ಎಳೆದ ಸ್ಪರ್ಶಕಗಳಾಗಿವೆ.

 ಸಾಧನೀಯ : PQ=PR 

 ಸಾಧನೆ :  ಲಂಬಕೋನ ತ್ರಿಭುಜOQP ಮತ್ತು ORP ಗಳಲ್ಲಿ

OQ=OR.                    (ಒಂದೇ ರುದ್ರ ಒಂದೇ ವೃತ್ತದ ತ್ರಿಜ್ಯಗಳು)

OP=OP.                  (  ಸಾಮಾನ್ಯ ಬಾಹು)

∆OPQ = ∆ ORP.   ( ಲಂಬಕೋನ ವಿಕರಣ ಬಾಹು)

PQ = PR  ಆಗಿದೆ 

NOTE :ವೃತ್ತಕ್ಕೆ ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ಎರಡು ಸ್ಪರ್ಶಕಗಳನ್ನು ಎಳೆದಾಗ ತ್ರಿಜ್ಯಗಳ ನಡುವಿನ ಕೇಂದ್ರ ಕೋನ ಮತ್ತು ಸ್ಪರ್ಶಕಗಳ ನಡುವಿನ ಕೋನಗಳ ಮೊತ್ತ 180° ಇರುತ್ತದೆ.

ಉದಾಹರಣೆ 1) ಚಿತ್ರದಲ್ಲಿ TP ಮತ್ತು TQ ಗಳು P ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆಎಳೆದ ಸ್ಪರ್ಶಕಗಳು ,ಕೋನPOQ=110° ಆದರೆ ಕೋನ PTQ ಅಳತೆ ಕಂಡುಹಿಡಿಯಿರಿ.

ಪರಿಹಾರ POQ+PTQ = 180°

                110° + PTQ =180°

PTQ = 180°-110°

PTQ =70°

NOTE : ಎರಡು ಏಕ ಕೇಂದ್ರೀಯ ವೃತ್ತಗಳಲ್ಲಿ ದೊಡ್ಡ ವೃತ್ತದ ಜಾವೂ ಚಿಕ್ಕ ವೃತ್ತವನ್ನು ಸ್ಪರ್ಶಿಸಿದರೆ ಜಾವು ಸ್ಪರ್ಶ ಬಿಂದುವಿನಲ್ಲಿ ಅರ್ಧಿಸಲ್ಪಡುತ್ತದೆ

ಉದಾಹರಣೆ2) ಚಿತ್ರದಲ್ಲಿ AB=8 cm ಆಗಿದ್ದಾಗ AP ಯ ಉದ್ದ ಕಂಡುಹಿಡಿಯಿರಿ.

ಪರಿಹಾರ ಚಿತ್ರದಲ್ಲಿ AB = 8cm ಆದಾಗ 

AP =AB/2

AP =8/2

AP = 4 cm

NOTE : ವೃತ್ತ ಕೇಂದ್ರವನ್ನು ಹೊಂದಿರುವ ವೃತ್ತಕ್ಕೆ ಬಾಹ್ಯ ಬಿಂದು T ಯಿಂದ TP ಮತ್ತು TQ ಎರಡು ಸ್ಪರ್ಶಕಗಳನ್ನು ಎಳೆದಾಗಬಾಹ್ಯ ಕೋನ PTQ=2OPQಆಗಿರುತ್ತದೆ.

ಉದಾಹರಣೆ : ಚಿತ್ರದಲ್ಲಿ O ವೃತ್ತ ಕೇಂದ್ರ, TP ಮತ್ತು TQ ಸ್ಪರ್ಶಕಗಳು ಆದಾಗ

PTQ ಬೆಲೆ ಕಂಡುಹಿಡಿಯಿರಿ.

ಪರಹಾರ : ಚಿತ್ರದಲ್ಲಿ O ವೃತ್ತ ಕೇಂದ್ರ, TP ಮತ್ತು TQ ಸ್ಪರ್ಶಕಗಳು,

 OPQ =35°

PTQ =2×OPQ

         =2×35°

          =70°

ಸಲಹಾತ್ಮಕ ಪ್ರಶ್ನೆಗಳು 

O ವೃತ್ತ ಕೇಂದ್ರವನ್ನು ಹೊಂದಿರುವ ವೃತ್ತಕ್ಕೆ ಬಾಹ್ಯ ಬಿಂದು Tನಿಂದ TPಮತ್ತು TQ ಎರಡು ಸ್ಪರ್ಶಕಗಳನ್ನು ಎಳೆದಿದೆ ಎಂದು ಸಾಧಿಸಿರಿ.

ಪರಿಹಾರ : ಚಿತ್ರದಲ್ಲಿ O ವೃತ್ತ ಕೇಂದ್ರ, TP ಮತ್ತು TQ ಸ್ಪರ್ಶಕಗಳು

TP=TQಆಗಿವೆ

∆TPQ ಒಂದು ಸಮದ್ವಿಬಾಹು ತ್ರಿಭುಜವಾಗಿದೆ.

PTQ=x ಆಗಿರಲಿ

TPQ=TQP=1/2[180°-x]

                    =90°-1/2x

OPT=90°

OPQ= OPT-[90°-1/2x]

OPQ =1/2x

OPQ = ½ PTQ

2OPQ = PTQ


ಉದಾಹರಣೆ 3) ABCD ಚತುರ್ಭುಜದಲ್ಲಿ ವೃತ್ತವು ಅಂತಸ್ಥವಾಗಿದೆAB+CD=AD+BC ಎಂದು ಸಾಧಿಸಿ 

ಪರಿಹಾರ : ಚಿತ್ರದಲ್ಲಿ A,ನಿಂದ ಎಳೆದ ಸ್ಪರ್ಶಕಗಳು AS=AP

                  B ನಿಂದ ಎಳೆದ ಸ್ಪರ್ಶಕಗಳು BP=BQ

     C ನಿಂದ ಎಳೆದ ಸ್ಪರ್ಶಕಗಳು CR= CQ

D ನಿಂದ ಎಳೆದ ಸ್ಪರ್ಶಕಗಳು DR=DS

LHS = AB+CD

         = AP+BP+DR+CR------------->(1)

RHS = AD+BC

          = AS+DS+BQ+CQ

          = AP+DR+BP+CR ------------((2)

(1)&(2) ರಿಂದ

LHS= RHS 

AB+CD =AD+BC ಆಗಿದೆ.


ಹೆಚ್ಚಿನ ಅಭ್ಯಾಸಕ್ಕಾಗಿ ಪ್ರಶ್ನೆಗಳು


5 ಸೆಂಟಿಮೀಟರ್ ತ್ರಿಜ್ಯವಿರುವ ಒಂದು ವೃತ್ತದಲ್ಲಿ ಜ ಪಿ ಕ್ಯೂ ಉದ್ದವು 8cm ಆಗಿದೆ ಪಿ ಮತ್ತು ಕ್ಯೂ ಬಿಂದುವಿನ ಸ್ಪರ್ಶಕಗಳು ಟಿ ಬಿಂದುವಿನಲ್ಲಿ ಸಂಧಿಸುತ್ತವೆ ಟಿ ಪಿ ಯ ಉದ್ದವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ .

ವೃತ್ತ ಕೇಂದ್ರದಿಂದ 5 cm ದೂರದಲ್ಲಿರುವ ಏ ಬಿಂದುವಿನಿಂದ ಎಳೆದ ಸ್ಪರ್ಶಕದ ಉದ್ದವು 4 cm ಇದೆ ವೃತ್ತದ ತ್ರಿಜ್ಯದ ಉದ್ದವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

 ಸ್ಪರ್ಶ ಬಿಂದು D ಯು BC ಬಾಹುವನ್ನು BD ಮತ್ತು DC ಯ ಉದ್ದ ಕ್ರಮವಾಗಿ 8cm ಮತ್ತು 6 cm ಇರುವಂತೆ 4cm ತ್ರಿಜ್ಯವಿರುವ ಒಂದು ವೃತ್ತವು ∆ABC ದಲ್ಲಿ ಆವೃತ್ತಗೊಳಿಸಲು ಅಂತಸ್ಥವಾಗಿರುವಂತೆ ರಚಿಸಲಾಗಿದೆ,AB ಮತ್ತುAC ಬಾಹುಗಳ ಉದ್ದವನ್ನು ಕಂಡು ಹಿಡಿಯಿರಿ.

ಒಂದು ವೃತ್ತದ ಸ್ಪರ್ಶಕವು ಸ್ಪರ್ಶ ಬಿಂದುವಿನಲ್ಲಿ ಎಳೆದ ತ್ರಿಜ್ಯಕ್ಕೆ ----------ಆಗಿರುತ್ತದೆ.

ಒಂದು ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆಎಳೆದಎರಡು ಸ್ಪರ್ಶಕಗಳು--------- ವಾಗಿರುತ್ತವೆ.

5 cm ತ್ರಿಜ್ಯವಿರುವ ವೃತ್ತ P ಬಿಂದುವಿನಲ್ಲಿ ಎಳೆದ ಸ್ಪರ್ಶಕ PQ ಇದು ವೃತ್ತ ಕೇಂದ್ರ O ದಿಂದ ಎಳೆದ ರೇಖೆಯನ್ನು ಬಿಂದುವಿನಲ್ಲಿ ಸಂಧಿಸುತ್ತದೆ 12 ಸೆಂಟಿಮೀಟರ್ ಆದರೆ PQವಿನ ಉದ್ದವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ .

ಒಂದು ವೃತ್ತವನ್ನು ಎರಡು ಬಿಂದುಗಳಲ್ಲಿ ಸೇರಿಸುವ ರೇಖೆಯೇ-------------

 ಒಂದು ವೃತ್ತವು ಹೊಂದಿರಬಹುದಾದ ಸಮಾಂತರ ಸ್ಪರ್ಶಕಗಳ ಸಂಖ್ಯೆ----------



                                ಘಟಕ ಪರೀಕ್ಷೆ

Oವೃತ್ತ ಕೇಂದ್ರವಿರುವ ಒಂದು ವೃತ್ತಕ್ಕೆ                             1×7=7

 P ಬಿಂದುವಿನಿಂದ ಎಳೆದ ಸ್ಪರ್ಶಕಗಳಾದ PA ಮತ್ತು PB ಗಳ ನಡುವಿನ ಕೋನ 80° ಆದರೆ POA ಅಳತೆ 

50° b)  60° c)  70° d) 80° 

ಒಂದು ಬಿಂದು Q ನಿಂದ ವೃತ್ತಕ್ಕೆ ಎಳೆದ ಸ್ಪರ್ಶಕದ ಉದ್ದ 24 cm ಮತ್ತು ವೃತ್ತ ಕೇಂದ್ರ O ಹಾಗೂ Q ಬಿಂದುವಿನ ನಡುವಿನ ದೂರ 25 cm ಆದರೆ ವೃತ್ತದ ತ್ರಿಜ್ಯ

7 cm. b) 12 cm c)15 cm d) 24 cm 

ಚಿತ್ರದಲ್ಲಿ OB AB ,AB ಯ ಉದ್ದವು 

8cm  b) 6cm c) 7cm d) 5cm 

ಒಂದು ವೃತ್ತದ ಒಂದು ಬಿಂದುವಿನಲ್ಲಿ------- ಸ್ಪರ್ಶಕ ಎಳೆಯಬಹುದು

ವೃತ್ತಕ್ಕೆ ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ನಿರ್ದಿಷ್ಟವಾಗಿ -------ಸ್ಪರ್ಶಕಗಳನ್ನು ಎಳೆಯಬಹುದು .

ಸ್ಪರ್ಶಕ ಮತ್ತು ವೃತ್ತಕ್ಕಿರುವ ಸಾಮಾನ್ಯ ಬಿಂದು-----------

 ವೃತ್ತ ಕೇಂದ್ರದಿಂದ 5 cm ದೂರದಲ್ಲಿರುವ A ಬಿಂದುವಿನಿಂದ ಎಳೆದ ಸ್ಪರ್ಶಕದ ಉದ್ದವು 4 cm ಇದೆ, ವೃತ್ತದ ತ್ರಿಜ್ಯದ ಉದ್ದವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ .

“ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಎಳೆದ ಸ್ಪರ್ಶಕಗಳ       3×1=3     

 ಉದ್ದ ಉದ್ದವು  ಸಮನಾಗಿರುತ್ತವೆ” ಎಂದು ಸಾಧಿಸಿ.

OR

“ ವೃತ್ತದ ಮೇಲಿನ ಯಾವುದೇ ಬಿಂದುವಿನಲ್ಲಿ ಎಳೆದ ತ್ರಿಜ್ಯಕ್ಕೆ ಲಂಬವಾಗಿರುತ್ತದೆ” ಎಂದು ಸಾಧಿಸಿ.

Comments

Popular posts from this blog

ಮಕರ ಸಂಕ್ರಾಂತಿಯ ನಿಜವಾದ ಆಚರಣೆ ಎಂದು?

ಅಕ್ಕಮಹಾದೇವಿಯವರ ಆಯ್ದ ವಚನಗಳು. Selected Vachanas of Akkamahadevi.